Skip to content

SimpleDiffer

Bases: AbstractDiffer

Source code in library_analyzer/processing/migration/model/_differ.py
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
class SimpleDiffer(AbstractDiffer):
    assigned_by_look_up_similarity: dict[
        ParameterAssignment, dict[ParameterAssignment, float]
    ]
    previous_parameter_similarity: dict[str, dict[str, float]] = {}
    previous_function_similarity: dict[str, dict[str, float]] = {}

    def get_related_mappings(
        self,
    ) -> Optional[list[Mapping]]:
        return None

    def notify_new_mapping(self, mappings: list[Mapping]) -> None:
        return

    def get_additional_mappings(self) -> list[Mapping]:
        return []

    def __init__(
        self,
        previous_base_differ: Optional[AbstractDiffer],
        previous_mappings: list[Mapping],
        apiv1: API,
        apiv2: API,
    ) -> None:
        super().__init__(previous_base_differ, previous_mappings, apiv1, apiv2)
        distance_between_implicit_and_explicit = 0.3
        distance_between_vararg_and_normal = 0.3
        distance_between_position_and_named = 0.3
        distance_between_both_to_one = 0.15
        distance_between_one_to_both = 0.15
        self.assigned_by_look_up_similarity = {
            ParameterAssignment.IMPLICIT: {
                ParameterAssignment.IMPLICIT: 1.0,
                ParameterAssignment.NAMED_VARARG: 1.0
                - distance_between_implicit_and_explicit
                - distance_between_vararg_and_normal
                - distance_between_position_and_named,
                ParameterAssignment.POSITIONAL_VARARG: 1.0
                - distance_between_implicit_and_explicit
                - distance_between_vararg_and_normal,
                ParameterAssignment.POSITION_OR_NAME: 1.0
                - distance_between_implicit_and_explicit,
                ParameterAssignment.NAME_ONLY: 1.0
                - distance_between_implicit_and_explicit,
                ParameterAssignment.POSITION_ONLY: 1.0
                - distance_between_implicit_and_explicit,
            },
            ParameterAssignment.NAMED_VARARG: {
                ParameterAssignment.IMPLICIT: 1.0
                - distance_between_implicit_and_explicit
                - distance_between_vararg_and_normal
                - distance_between_position_and_named,
                ParameterAssignment.NAMED_VARARG: 1.0,
                ParameterAssignment.POSITIONAL_VARARG: 1.0
                - distance_between_position_and_named,
                ParameterAssignment.POSITION_OR_NAME: 1.0
                - distance_between_vararg_and_normal
                - distance_between_one_to_both,
                ParameterAssignment.NAME_ONLY: 1.0 - distance_between_vararg_and_normal,
                ParameterAssignment.POSITION_ONLY: 1.0
                - distance_between_vararg_and_normal
                - distance_between_position_and_named,
            },
            ParameterAssignment.POSITIONAL_VARARG: {
                ParameterAssignment.IMPLICIT: 1.0
                - distance_between_implicit_and_explicit
                - distance_between_vararg_and_normal,
                ParameterAssignment.NAMED_VARARG: 1.0
                - distance_between_position_and_named,
                ParameterAssignment.POSITIONAL_VARARG: 1.0,
                ParameterAssignment.POSITION_OR_NAME: 1.0
                - distance_between_vararg_and_normal
                - distance_between_one_to_both,
                ParameterAssignment.NAME_ONLY: 1.0
                - distance_between_vararg_and_normal
                - distance_between_position_and_named,
                ParameterAssignment.POSITION_ONLY: 1.0
                - distance_between_vararg_and_normal,
            },
            ParameterAssignment.POSITION_OR_NAME: {
                ParameterAssignment.IMPLICIT: 1.0
                - distance_between_implicit_and_explicit,
                ParameterAssignment.NAMED_VARARG: 1.0
                - distance_between_vararg_and_normal
                - distance_between_both_to_one,
                ParameterAssignment.POSITIONAL_VARARG: 1.0
                - distance_between_vararg_and_normal
                - distance_between_both_to_one,
                ParameterAssignment.POSITION_OR_NAME: 1.0,
                ParameterAssignment.NAME_ONLY: 1.0 - distance_between_both_to_one,
                ParameterAssignment.POSITION_ONLY: 1.0 - distance_between_both_to_one,
            },
            ParameterAssignment.NAME_ONLY: {
                ParameterAssignment.IMPLICIT: 1.0
                - distance_between_implicit_and_explicit,
                ParameterAssignment.NAMED_VARARG: 1.0
                - distance_between_vararg_and_normal,
                ParameterAssignment.POSITIONAL_VARARG: 1.0
                - distance_between_vararg_and_normal
                - distance_between_position_and_named,
                ParameterAssignment.POSITION_OR_NAME: 1.0
                - distance_between_one_to_both,
                ParameterAssignment.NAME_ONLY: 1.0,
                ParameterAssignment.POSITION_ONLY: 1.0
                - distance_between_position_and_named,
            },
            ParameterAssignment.POSITION_ONLY: {
                ParameterAssignment.IMPLICIT: 1.0
                - distance_between_implicit_and_explicit,
                ParameterAssignment.NAMED_VARARG: 1.0
                - distance_between_vararg_and_normal
                - distance_between_position_and_named,
                ParameterAssignment.POSITIONAL_VARARG: 1.0
                - distance_between_vararg_and_normal,
                ParameterAssignment.POSITION_OR_NAME: 1.0
                - distance_between_one_to_both,
                ParameterAssignment.NAME_ONLY: 1.0
                - distance_between_position_and_named,
                ParameterAssignment.POSITION_ONLY: 1.0,
            },
        }

    def compute_class_similarity(self, classv1: Class, classv2: Class) -> float:
        """
        Computes similarity between classes from apiv1 and apiv2 with the respect to their name, id, code, and attributes.
        :param classv1: attribute from apiv1
        :param classv2: attribute from apiv2
        :return: value between 0 and 1, where 1 means that the elements are equal
        """
        normalize_similarity = 6

        code_similarity = self._compute_code_similarity(
            classv1.get_formatted_code(), classv2.get_formatted_code()
        )
        name_similarity = self._compute_name_similarity(classv1.name, classv2.name)

        attributes_similarity = distance(
            classv1.instance_attributes, classv2.instance_attributes
        )
        attributes_similarity = attributes_similarity / (
            max(len(classv1.instance_attributes), len(classv2.instance_attributes), 1)
        )
        attributes_similarity = 1 - attributes_similarity

        function_similarity = distance(
            classv1.methods,
            classv2.methods,
        ) / max(len(classv1.methods), len(classv2.methods), 1)
        function_similarity = 1 - function_similarity

        id_similarity = self._compute_id_similarity(classv1.id, classv2.id)

        documentation_similarity = self._compute_documentation_similarity(
            classv1.documentation, classv2.documentation
        )
        if documentation_similarity < 0:
            documentation_similarity = 0
            normalize_similarity -= 1

        return (
            name_similarity
            + attributes_similarity
            + function_similarity
            + code_similarity
            + id_similarity
            + documentation_similarity
        ) / normalize_similarity

    def _compute_name_similarity(self, namev1: str, namev2: str) -> float:
        name_similarity = distance(namev1, namev2) / max(len(namev1), len(namev2), 1)
        return 1 - name_similarity

    def compute_attribute_similarity(
        self,
        attributev1: Attribute,
        attributev2: Attribute,
    ) -> float:
        """
        Computes similarity between attributes from apiv1 and apiv2 with the respect to their name and type.
        :param attributev1: attribute from apiv1
        :param attributev2: attribute from apiv2
        :return: value between 0 and 1, where 1 means that the elements are equal
        """
        name_similarity = self._compute_name_similarity(
            attributev1.name, attributev2.name
        )
        type_listv1 = self._create_list_from_type(attributev1.types)
        type_listv2 = self._create_list_from_type(attributev2.types)
        type_similarity = distance(type_listv1, type_listv2) / max(
            len(type_listv1), len(type_listv2), 1
        )
        type_similarity = 1 - type_similarity
        return (name_similarity + type_similarity) / 2

    def compute_function_similarity(
        self, functionv1: Function, functionv2: Function
    ) -> float:
        """
        Computes similarity between functions from apiv1 and apiv2 with the respect to their code, name, id, and parameters.
        :param functionv1: attribute from apiv1
        :param functionv2: attribute from apiv2
        :return: value between 0 and 1, where 1 means that the elements are equal
        """
        if (
            functionv1.id in self.previous_function_similarity
            and functionv2.id in self.previous_function_similarity[functionv1.id]
        ):
            return self.previous_function_similarity[functionv1.id][functionv2.id]

        normalize_similarity = 5

        code_similarity = self._compute_code_similarity(
            functionv1.get_formatted_code(), functionv2.get_formatted_code()
        )
        name_similarity = self._compute_name_similarity(
            functionv1.name, functionv2.name
        )

        parameter_similarity = distance(
            functionv1.parameters,
            functionv2.parameters,
        ) / max(len(functionv1.parameters), len(functionv2.parameters), 1)
        parameter_similarity = 1 - parameter_similarity

        id_similarity = self._compute_id_similarity(functionv1.id, functionv2.id)

        documentation_similarity = self._compute_documentation_similarity(
            functionv1.documentation, functionv2.documentation
        )
        if documentation_similarity < 0:
            documentation_similarity = 0
            normalize_similarity -= 1

        result = (
            code_similarity
            + name_similarity
            + parameter_similarity
            + id_similarity
            + documentation_similarity
        ) / normalize_similarity
        if functionv1.id not in self.previous_function_similarity:
            self.previous_function_similarity[functionv1.id] = {}
        self.previous_function_similarity[functionv1.id][functionv2.id] = result
        return result

    def _compute_code_similarity(self, codev1: str, codev2: str) -> float:
        splitv1 = codev1.split("\n")
        splitv2 = codev2.split("\n")
        diff_code = distance(splitv1, splitv2) / max(len(splitv1), len(splitv2), 1)
        return 1 - diff_code

    def compute_parameter_similarity(
        self, parameterv1: Parameter, parameterv2: Parameter
    ) -> float:
        """
        Computes similarity between parameters from apiv1 and apiv2 with the respect to their name, type, assignment, default value, documentation, and id.
        :param parameterv1: attribute from apiv1
        :param parameterv2: attribute from apiv2
        :return: value between 0 and 1, where 1 means that the elements are equal
        """
        if (
            parameterv1.id in self.previous_parameter_similarity
            and parameterv2.id in self.previous_parameter_similarity[parameterv1.id]
        ):
            return self.previous_parameter_similarity[parameterv1.id][parameterv2.id]

        normalize_similarity = 6
        parameter_name_similarity = self._compute_name_similarity(
            parameterv1.name, parameterv2.name
        )
        parameter_type_similarity = self._compute_type_similarity(
            parameterv1.type, parameterv2.type
        )
        parameter_assignment_similarity = self._compute_assignment_similarity(
            parameterv1.assigned_by, parameterv2.assigned_by
        )
        if parameter_assignment_similarity < 0:
            parameter_assignment_similarity = 0
            normalize_similarity -= 1
        parameter_default_value_similarity = self._compute_default_value_similarity(
            parameterv1.default_value, parameterv2.default_value
        )
        if parameter_default_value_similarity < 0:
            parameter_default_value_similarity = 0
            normalize_similarity -= 1
        parameter_documentation_similarity = self._compute_documentation_similarity(
            parameterv1.documentation, parameterv2.documentation
        )
        if parameter_documentation_similarity < 0:
            parameter_documentation_similarity = 0
            normalize_similarity -= 1

        id_similarity = self._compute_id_similarity(parameterv1.id, parameterv2.id)

        result = (
            parameter_name_similarity
            + parameter_type_similarity
            + parameter_assignment_similarity
            + parameter_default_value_similarity
            + parameter_documentation_similarity
            + id_similarity
        ) / normalize_similarity
        if parameterv1.id not in self.previous_parameter_similarity:
            self.previous_parameter_similarity[parameterv1.id] = {}
        self.previous_parameter_similarity[parameterv1.id][parameterv2.id] = result
        return result

    def _compute_type_similarity(
        self, typev1: Optional[AbstractType], typev2: Optional[AbstractType]
    ) -> float:
        if typev1 is None:
            if typev2 is None:
                return 1
            return 0
        if typev2 is None:
            return 0

        type_listv1 = self._create_list_from_type(typev1)
        type_listv2 = self._create_list_from_type(typev2)
        diff_elements = distance(type_listv1, type_listv2) / max(
            len(type_listv1), len(type_listv2), 1
        )
        return 1 - diff_elements

    def _create_list_from_type(
        self, abstract_type: Optional[AbstractType]
    ) -> Sequence[Optional[AbstractType]]:
        if abstract_type is not None and isinstance(abstract_type, UnionType):
            return abstract_type.types
        return [abstract_type]

    def _compute_assignment_similarity(
        self, assigned_byv1: ParameterAssignment, assigned_byv2: ParameterAssignment
    ) -> float:
        return self.assigned_by_look_up_similarity[assigned_byv1][assigned_byv2]

    def compute_result_similarity(self, resultv1: Result, resultv2: Result) -> float:
        """
        Computes similarity between results from apiv1 and apiv2 with the respect to their name.
        :param resultv1: attribute from apiv1
        :param resultv2: attribute from apiv2
        :return: value between 0 and 1, where 1 means that the elements are equal
        """
        return self._compute_name_similarity(resultv1.name, resultv2.name)

    def _compute_default_value_similarity(
        self, default_valuev1: Optional[str], default_valuev2: Optional[str]
    ) -> float:
        if default_valuev1 is None and default_valuev2 is None:
            return -1.0
        if default_valuev1 is None or default_valuev2 is None:
            return 0.0
        if default_valuev1 == "None" and default_valuev2 == "None":
            return 1.0
        try:
            intv1_value = int(default_valuev1)
            intv2_value = int(default_valuev2)
            if intv1_value == intv2_value:
                return 1.0
            return 0.5
        except ValueError:
            try:
                floatv1_value = float(default_valuev1)
                floatv2_value = float(default_valuev2)
                if floatv1_value == floatv2_value:
                    return 1.0
            except ValueError:
                try:
                    if float(int(default_valuev1)) == float(default_valuev2):
                        return 0.75
                except ValueError:
                    try:
                        if float(int(default_valuev2)) == float(default_valuev1):
                            return 0.75
                    except ValueError:
                        pass
        if default_valuev1 in (
            "True",
            "False",
        ) and default_valuev2 in ("True", "False"):
            if bool(default_valuev1) == bool(default_valuev2):
                return 1.0
            return 0.5
        valuev1_is_in_quotation_marks = (
            default_valuev1.startswith("'") and default_valuev1.endswith("'")
        ) or (default_valuev1.startswith('"') and default_valuev1.endswith('"'))
        valuev2_is_in_quotation_marks = (
            default_valuev2.startswith("'") and default_valuev2.endswith("'")
        ) or (default_valuev2.startswith('"') and default_valuev2.endswith('"'))
        if valuev1_is_in_quotation_marks and valuev2_is_in_quotation_marks:
            if default_valuev1[1:-1] == default_valuev2[1:-1]:
                return 1.0
            return 0.5
        return 0.0

    def _compute_documentation_similarity(
        self,
        documentationv1: Union[
            ClassDocumentation, FunctionDocumentation, ParameterDocumentation
        ],
        documentationv2: Union[
            ClassDocumentation, FunctionDocumentation, ParameterDocumentation
        ],
    ) -> float:
        if len(documentationv1.description) == len(documentationv2.description) == 0:
            return -1.0
        descriptionv1 = re.split("[\n ]", documentationv1.description)
        descriptionv2 = re.split("[\n ]", documentationv2.description)

        documentation_similarity = distance(descriptionv1, descriptionv2) / max(
            len(descriptionv1), len(descriptionv2), 1
        )
        return 1 - documentation_similarity

    def _compute_id_similarity(self, idv1: str, idv2: str) -> float:
        module_pathv1 = idv1.split("/")[1].split(".")
        additional_module_pathv1 = idv1.split("/")[2:-1]
        if len(additional_module_pathv1) > 0:
            module_pathv1.extend(additional_module_pathv1)
        module_pathv2 = idv2.split("/")[1].split(".")
        additional_module_pathv2 = idv2.split("/")[2:-1]
        if len(additional_module_pathv2) > 0:
            module_pathv2.extend(additional_module_pathv2)

        def cost_function(iteration: int, max_iteration: int) -> float:
            return (max_iteration - iteration + 1) / max_iteration

        total_costs, max_iterations = distance_elements_with_cost_function(
            module_pathv1, module_pathv2, cost_function
        )
        return 1 - (total_costs / (sum(range(1, max_iterations + 1)) / max_iterations))

assigned_by_look_up_similarity = {ParameterAssignment.IMPLICIT: {ParameterAssignment.IMPLICIT: 1.0, ParameterAssignment.NAMED_VARARG: 1.0 - distance_between_implicit_and_explicit - distance_between_vararg_and_normal - distance_between_position_and_named, ParameterAssignment.POSITIONAL_VARARG: 1.0 - distance_between_implicit_and_explicit - distance_between_vararg_and_normal, ParameterAssignment.POSITION_OR_NAME: 1.0 - distance_between_implicit_and_explicit, ParameterAssignment.NAME_ONLY: 1.0 - distance_between_implicit_and_explicit, ParameterAssignment.POSITION_ONLY: 1.0 - distance_between_implicit_and_explicit}, ParameterAssignment.NAMED_VARARG: {ParameterAssignment.IMPLICIT: 1.0 - distance_between_implicit_and_explicit - distance_between_vararg_and_normal - distance_between_position_and_named, ParameterAssignment.NAMED_VARARG: 1.0, ParameterAssignment.POSITIONAL_VARARG: 1.0 - distance_between_position_and_named, ParameterAssignment.POSITION_OR_NAME: 1.0 - distance_between_vararg_and_normal - distance_between_one_to_both, ParameterAssignment.NAME_ONLY: 1.0 - distance_between_vararg_and_normal, ParameterAssignment.POSITION_ONLY: 1.0 - distance_between_vararg_and_normal - distance_between_position_and_named}, ParameterAssignment.POSITIONAL_VARARG: {ParameterAssignment.IMPLICIT: 1.0 - distance_between_implicit_and_explicit - distance_between_vararg_and_normal, ParameterAssignment.NAMED_VARARG: 1.0 - distance_between_position_and_named, ParameterAssignment.POSITIONAL_VARARG: 1.0, ParameterAssignment.POSITION_OR_NAME: 1.0 - distance_between_vararg_and_normal - distance_between_one_to_both, ParameterAssignment.NAME_ONLY: 1.0 - distance_between_vararg_and_normal - distance_between_position_and_named, ParameterAssignment.POSITION_ONLY: 1.0 - distance_between_vararg_and_normal}, ParameterAssignment.POSITION_OR_NAME: {ParameterAssignment.IMPLICIT: 1.0 - distance_between_implicit_and_explicit, ParameterAssignment.NAMED_VARARG: 1.0 - distance_between_vararg_and_normal - distance_between_both_to_one, ParameterAssignment.POSITIONAL_VARARG: 1.0 - distance_between_vararg_and_normal - distance_between_both_to_one, ParameterAssignment.POSITION_OR_NAME: 1.0, ParameterAssignment.NAME_ONLY: 1.0 - distance_between_both_to_one, ParameterAssignment.POSITION_ONLY: 1.0 - distance_between_both_to_one}, ParameterAssignment.NAME_ONLY: {ParameterAssignment.IMPLICIT: 1.0 - distance_between_implicit_and_explicit, ParameterAssignment.NAMED_VARARG: 1.0 - distance_between_vararg_and_normal, ParameterAssignment.POSITIONAL_VARARG: 1.0 - distance_between_vararg_and_normal - distance_between_position_and_named, ParameterAssignment.POSITION_OR_NAME: 1.0 - distance_between_one_to_both, ParameterAssignment.NAME_ONLY: 1.0, ParameterAssignment.POSITION_ONLY: 1.0 - distance_between_position_and_named}, ParameterAssignment.POSITION_ONLY: {ParameterAssignment.IMPLICIT: 1.0 - distance_between_implicit_and_explicit, ParameterAssignment.NAMED_VARARG: 1.0 - distance_between_vararg_and_normal - distance_between_position_and_named, ParameterAssignment.POSITIONAL_VARARG: 1.0 - distance_between_vararg_and_normal, ParameterAssignment.POSITION_OR_NAME: 1.0 - distance_between_one_to_both, ParameterAssignment.NAME_ONLY: 1.0 - distance_between_position_and_named, ParameterAssignment.POSITION_ONLY: 1.0}} instance-attribute

previous_function_similarity: dict[str, dict[str, float]] = {} class-attribute

previous_parameter_similarity: dict[str, dict[str, float]] = {} class-attribute

__init__(previous_base_differ, previous_mappings, apiv1, apiv2)

Source code in library_analyzer/processing/migration/model/_differ.py
def __init__(
    self,
    previous_base_differ: Optional[AbstractDiffer],
    previous_mappings: list[Mapping],
    apiv1: API,
    apiv2: API,
) -> None:
    super().__init__(previous_base_differ, previous_mappings, apiv1, apiv2)
    distance_between_implicit_and_explicit = 0.3
    distance_between_vararg_and_normal = 0.3
    distance_between_position_and_named = 0.3
    distance_between_both_to_one = 0.15
    distance_between_one_to_both = 0.15
    self.assigned_by_look_up_similarity = {
        ParameterAssignment.IMPLICIT: {
            ParameterAssignment.IMPLICIT: 1.0,
            ParameterAssignment.NAMED_VARARG: 1.0
            - distance_between_implicit_and_explicit
            - distance_between_vararg_and_normal
            - distance_between_position_and_named,
            ParameterAssignment.POSITIONAL_VARARG: 1.0
            - distance_between_implicit_and_explicit
            - distance_between_vararg_and_normal,
            ParameterAssignment.POSITION_OR_NAME: 1.0
            - distance_between_implicit_and_explicit,
            ParameterAssignment.NAME_ONLY: 1.0
            - distance_between_implicit_and_explicit,
            ParameterAssignment.POSITION_ONLY: 1.0
            - distance_between_implicit_and_explicit,
        },
        ParameterAssignment.NAMED_VARARG: {
            ParameterAssignment.IMPLICIT: 1.0
            - distance_between_implicit_and_explicit
            - distance_between_vararg_and_normal
            - distance_between_position_and_named,
            ParameterAssignment.NAMED_VARARG: 1.0,
            ParameterAssignment.POSITIONAL_VARARG: 1.0
            - distance_between_position_and_named,
            ParameterAssignment.POSITION_OR_NAME: 1.0
            - distance_between_vararg_and_normal
            - distance_between_one_to_both,
            ParameterAssignment.NAME_ONLY: 1.0 - distance_between_vararg_and_normal,
            ParameterAssignment.POSITION_ONLY: 1.0
            - distance_between_vararg_and_normal
            - distance_between_position_and_named,
        },
        ParameterAssignment.POSITIONAL_VARARG: {
            ParameterAssignment.IMPLICIT: 1.0
            - distance_between_implicit_and_explicit
            - distance_between_vararg_and_normal,
            ParameterAssignment.NAMED_VARARG: 1.0
            - distance_between_position_and_named,
            ParameterAssignment.POSITIONAL_VARARG: 1.0,
            ParameterAssignment.POSITION_OR_NAME: 1.0
            - distance_between_vararg_and_normal
            - distance_between_one_to_both,
            ParameterAssignment.NAME_ONLY: 1.0
            - distance_between_vararg_and_normal
            - distance_between_position_and_named,
            ParameterAssignment.POSITION_ONLY: 1.0
            - distance_between_vararg_and_normal,
        },
        ParameterAssignment.POSITION_OR_NAME: {
            ParameterAssignment.IMPLICIT: 1.0
            - distance_between_implicit_and_explicit,
            ParameterAssignment.NAMED_VARARG: 1.0
            - distance_between_vararg_and_normal
            - distance_between_both_to_one,
            ParameterAssignment.POSITIONAL_VARARG: 1.0
            - distance_between_vararg_and_normal
            - distance_between_both_to_one,
            ParameterAssignment.POSITION_OR_NAME: 1.0,
            ParameterAssignment.NAME_ONLY: 1.0 - distance_between_both_to_one,
            ParameterAssignment.POSITION_ONLY: 1.0 - distance_between_both_to_one,
        },
        ParameterAssignment.NAME_ONLY: {
            ParameterAssignment.IMPLICIT: 1.0
            - distance_between_implicit_and_explicit,
            ParameterAssignment.NAMED_VARARG: 1.0
            - distance_between_vararg_and_normal,
            ParameterAssignment.POSITIONAL_VARARG: 1.0
            - distance_between_vararg_and_normal
            - distance_between_position_and_named,
            ParameterAssignment.POSITION_OR_NAME: 1.0
            - distance_between_one_to_both,
            ParameterAssignment.NAME_ONLY: 1.0,
            ParameterAssignment.POSITION_ONLY: 1.0
            - distance_between_position_and_named,
        },
        ParameterAssignment.POSITION_ONLY: {
            ParameterAssignment.IMPLICIT: 1.0
            - distance_between_implicit_and_explicit,
            ParameterAssignment.NAMED_VARARG: 1.0
            - distance_between_vararg_and_normal
            - distance_between_position_and_named,
            ParameterAssignment.POSITIONAL_VARARG: 1.0
            - distance_between_vararg_and_normal,
            ParameterAssignment.POSITION_OR_NAME: 1.0
            - distance_between_one_to_both,
            ParameterAssignment.NAME_ONLY: 1.0
            - distance_between_position_and_named,
            ParameterAssignment.POSITION_ONLY: 1.0,
        },
    }

compute_attribute_similarity(attributev1, attributev2)

Computes similarity between attributes from apiv1 and apiv2 with the respect to their name and type. :param attributev1: attribute from apiv1 :param attributev2: attribute from apiv2 :return: value between 0 and 1, where 1 means that the elements are equal

Source code in library_analyzer/processing/migration/model/_differ.py
def compute_attribute_similarity(
    self,
    attributev1: Attribute,
    attributev2: Attribute,
) -> float:
    """
    Computes similarity between attributes from apiv1 and apiv2 with the respect to their name and type.
    :param attributev1: attribute from apiv1
    :param attributev2: attribute from apiv2
    :return: value between 0 and 1, where 1 means that the elements are equal
    """
    name_similarity = self._compute_name_similarity(
        attributev1.name, attributev2.name
    )
    type_listv1 = self._create_list_from_type(attributev1.types)
    type_listv2 = self._create_list_from_type(attributev2.types)
    type_similarity = distance(type_listv1, type_listv2) / max(
        len(type_listv1), len(type_listv2), 1
    )
    type_similarity = 1 - type_similarity
    return (name_similarity + type_similarity) / 2

compute_class_similarity(classv1, classv2)

Computes similarity between classes from apiv1 and apiv2 with the respect to their name, id, code, and attributes. :param classv1: attribute from apiv1 :param classv2: attribute from apiv2 :return: value between 0 and 1, where 1 means that the elements are equal

Source code in library_analyzer/processing/migration/model/_differ.py
def compute_class_similarity(self, classv1: Class, classv2: Class) -> float:
    """
    Computes similarity between classes from apiv1 and apiv2 with the respect to their name, id, code, and attributes.
    :param classv1: attribute from apiv1
    :param classv2: attribute from apiv2
    :return: value between 0 and 1, where 1 means that the elements are equal
    """
    normalize_similarity = 6

    code_similarity = self._compute_code_similarity(
        classv1.get_formatted_code(), classv2.get_formatted_code()
    )
    name_similarity = self._compute_name_similarity(classv1.name, classv2.name)

    attributes_similarity = distance(
        classv1.instance_attributes, classv2.instance_attributes
    )
    attributes_similarity = attributes_similarity / (
        max(len(classv1.instance_attributes), len(classv2.instance_attributes), 1)
    )
    attributes_similarity = 1 - attributes_similarity

    function_similarity = distance(
        classv1.methods,
        classv2.methods,
    ) / max(len(classv1.methods), len(classv2.methods), 1)
    function_similarity = 1 - function_similarity

    id_similarity = self._compute_id_similarity(classv1.id, classv2.id)

    documentation_similarity = self._compute_documentation_similarity(
        classv1.documentation, classv2.documentation
    )
    if documentation_similarity < 0:
        documentation_similarity = 0
        normalize_similarity -= 1

    return (
        name_similarity
        + attributes_similarity
        + function_similarity
        + code_similarity
        + id_similarity
        + documentation_similarity
    ) / normalize_similarity

compute_function_similarity(functionv1, functionv2)

Computes similarity between functions from apiv1 and apiv2 with the respect to their code, name, id, and parameters. :param functionv1: attribute from apiv1 :param functionv2: attribute from apiv2 :return: value between 0 and 1, where 1 means that the elements are equal

Source code in library_analyzer/processing/migration/model/_differ.py
def compute_function_similarity(
    self, functionv1: Function, functionv2: Function
) -> float:
    """
    Computes similarity between functions from apiv1 and apiv2 with the respect to their code, name, id, and parameters.
    :param functionv1: attribute from apiv1
    :param functionv2: attribute from apiv2
    :return: value between 0 and 1, where 1 means that the elements are equal
    """
    if (
        functionv1.id in self.previous_function_similarity
        and functionv2.id in self.previous_function_similarity[functionv1.id]
    ):
        return self.previous_function_similarity[functionv1.id][functionv2.id]

    normalize_similarity = 5

    code_similarity = self._compute_code_similarity(
        functionv1.get_formatted_code(), functionv2.get_formatted_code()
    )
    name_similarity = self._compute_name_similarity(
        functionv1.name, functionv2.name
    )

    parameter_similarity = distance(
        functionv1.parameters,
        functionv2.parameters,
    ) / max(len(functionv1.parameters), len(functionv2.parameters), 1)
    parameter_similarity = 1 - parameter_similarity

    id_similarity = self._compute_id_similarity(functionv1.id, functionv2.id)

    documentation_similarity = self._compute_documentation_similarity(
        functionv1.documentation, functionv2.documentation
    )
    if documentation_similarity < 0:
        documentation_similarity = 0
        normalize_similarity -= 1

    result = (
        code_similarity
        + name_similarity
        + parameter_similarity
        + id_similarity
        + documentation_similarity
    ) / normalize_similarity
    if functionv1.id not in self.previous_function_similarity:
        self.previous_function_similarity[functionv1.id] = {}
    self.previous_function_similarity[functionv1.id][functionv2.id] = result
    return result

compute_parameter_similarity(parameterv1, parameterv2)

Computes similarity between parameters from apiv1 and apiv2 with the respect to their name, type, assignment, default value, documentation, and id. :param parameterv1: attribute from apiv1 :param parameterv2: attribute from apiv2 :return: value between 0 and 1, where 1 means that the elements are equal

Source code in library_analyzer/processing/migration/model/_differ.py
def compute_parameter_similarity(
    self, parameterv1: Parameter, parameterv2: Parameter
) -> float:
    """
    Computes similarity between parameters from apiv1 and apiv2 with the respect to their name, type, assignment, default value, documentation, and id.
    :param parameterv1: attribute from apiv1
    :param parameterv2: attribute from apiv2
    :return: value between 0 and 1, where 1 means that the elements are equal
    """
    if (
        parameterv1.id in self.previous_parameter_similarity
        and parameterv2.id in self.previous_parameter_similarity[parameterv1.id]
    ):
        return self.previous_parameter_similarity[parameterv1.id][parameterv2.id]

    normalize_similarity = 6
    parameter_name_similarity = self._compute_name_similarity(
        parameterv1.name, parameterv2.name
    )
    parameter_type_similarity = self._compute_type_similarity(
        parameterv1.type, parameterv2.type
    )
    parameter_assignment_similarity = self._compute_assignment_similarity(
        parameterv1.assigned_by, parameterv2.assigned_by
    )
    if parameter_assignment_similarity < 0:
        parameter_assignment_similarity = 0
        normalize_similarity -= 1
    parameter_default_value_similarity = self._compute_default_value_similarity(
        parameterv1.default_value, parameterv2.default_value
    )
    if parameter_default_value_similarity < 0:
        parameter_default_value_similarity = 0
        normalize_similarity -= 1
    parameter_documentation_similarity = self._compute_documentation_similarity(
        parameterv1.documentation, parameterv2.documentation
    )
    if parameter_documentation_similarity < 0:
        parameter_documentation_similarity = 0
        normalize_similarity -= 1

    id_similarity = self._compute_id_similarity(parameterv1.id, parameterv2.id)

    result = (
        parameter_name_similarity
        + parameter_type_similarity
        + parameter_assignment_similarity
        + parameter_default_value_similarity
        + parameter_documentation_similarity
        + id_similarity
    ) / normalize_similarity
    if parameterv1.id not in self.previous_parameter_similarity:
        self.previous_parameter_similarity[parameterv1.id] = {}
    self.previous_parameter_similarity[parameterv1.id][parameterv2.id] = result
    return result

compute_result_similarity(resultv1, resultv2)

Computes similarity between results from apiv1 and apiv2 with the respect to their name. :param resultv1: attribute from apiv1 :param resultv2: attribute from apiv2 :return: value between 0 and 1, where 1 means that the elements are equal

Source code in library_analyzer/processing/migration/model/_differ.py
def compute_result_similarity(self, resultv1: Result, resultv2: Result) -> float:
    """
    Computes similarity between results from apiv1 and apiv2 with the respect to their name.
    :param resultv1: attribute from apiv1
    :param resultv2: attribute from apiv2
    :return: value between 0 and 1, where 1 means that the elements are equal
    """
    return self._compute_name_similarity(resultv1.name, resultv2.name)

get_additional_mappings()

Source code in library_analyzer/processing/migration/model/_differ.py
def get_additional_mappings(self) -> list[Mapping]:
    return []
Source code in library_analyzer/processing/migration/model/_differ.py
def get_related_mappings(
    self,
) -> Optional[list[Mapping]]:
    return None

notify_new_mapping(mappings)

Source code in library_analyzer/processing/migration/model/_differ.py
def notify_new_mapping(self, mappings: list[Mapping]) -> None:
    return